2,789 research outputs found

    Continuum Modeling and Simulation in Bone Tissue Engineering

    Get PDF
    Bone tissue engineering is currently a mature methodology from a research perspective. Moreover, modeling and simulation of involved processes and phenomena in BTE have been proved in a number of papers to be an excellent assessment tool in the stages of design and proof of concept through in-vivo or in-vitro experimentation. In this paper, a review of the most relevant contributions in modeling and simulation, in silico, in BTE applications is conducted. The most popular in silico simulations in BTE are classified into: (i) Mechanics modeling and sca old design, (ii) transport and flow modeling, and (iii) modeling of physical phenomena. The paper is restricted to the review of the numerical implementation and simulation of continuum theories applied to di erent processes in BTE, such that molecular dynamics or discrete approaches are out of the scope of the paper. Two main conclusions are drawn at the end of the paper: First, the great potential and advantages that in silico simulation o ers in BTE, and second, the need for interdisciplinary collaboration to further validate numerical models developed in BTE.Ministerio de Economía y Competitividad del Gobierno España DPI2017-82501-

    A Physical Layer Model for G3-PLC Networks Simulation

    Get PDF
    This work presents a model of the G3-PLC physical (PHY) layer tailored for network simulations. It allows simulating frequency selective channels with non-stationary colored noise. Collisions with other frames are modeled taking into account the length and the power of the interfering frames. Frame errors are estimated using the effective signal-to-interference-and-noise ratio mapping (ESM) function. The proposed PHY layer has been integrated into a distributed event-based simulator developed by Microchip. The layer 2+ stack of the simulator uses the same code that actual Microchip G3-PLC devices. Validation has been accomplished by comparing its results to a test network deployed in the laboratory. The latter consists of a coordinator and one hundred meters distributed in 5 levels. Faster-than-real-time simulations and an excellent agreement between the simulated and the measured performance indicators at the application layer have been obtained.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Special Issue on “Biomaterials for Bone Tissue Engineering”

    Get PDF
    The present Special Issue covers recent advances in the field of tissue engineering applied to bone tissue. Bone tissue engineering is a wide research topic, so di erent works from di erent transversal areas of research are shown. This Special Issue is a good example of a multidisciplinary collaboration in this research field. Authors from di erent disciplines, such as medical scientists, biomedical engineers, biologists, biomaterial researchers, clinicians, and mechanical engineers, are included from di erent laboratories and universities across the world. I specially thank the work and time of the reviewers, listed in Table A1 (in Appendix A), for their time and e orts in reviewing the papers compiled in this Special Issue.Ministerio de EconomĂ­a y Competitividad PGC2018-097257-B-C31ConsejerĂ­a de EconomĂ­a, Conocimiento, Empresas y Universidad Junta de AndalucĂ­a US-126169

    Policy instruments to promote electro-mobilityiIn the Eu28: A comprehensive review

    Get PDF
    Despite its environmental benefits, the amount of Electric Vehicles (EVs) in use within the European Union 28 is still very limited. Poor penetration might be explained by certain factors that dissuade potential buyers. To balance these factors and promote electro-mobility, Member States have established incentives to increase demand. However, the various measures are scattered. This paper contributes to fill the gap in the literature by offering an overall view of the main measures. The authors will focus on measures to promote electro-mobility within the EU28 until 2014. After an in-depth and comprehensive review of the relevant measures, the authors conclude that the most important policy instruments to promote EVs are tax and infrastructure measures in addition to financial incentives for purchasing and supporting R&D projects. Regardless of the scarcity of EV registration data, the available information allows us to conclude that higher EV penetration levels appear in countries where the registration tax, the ownership tax, or both taxes have developed a partial green tax by including CO2 emissions in the calculation of the final invoice.Junta de Andalucía proyecto SEJ-132Ministerio de Economía y Competitividad de España, Cátedra de Economía de la Energía y del Medio Ambiente (Cátedra de Energía y Economía Ambiental) ECO2014-56399-RUniversidad Autónoma de Chil

    Colorful Imprints of Heavy States in the Electroweak Effective Theory

    Get PDF
    We analyze heavy states from generic ultraviolet completions of the Standard Model in a model-independent way and investigate their implications on the low-energy couplings of the electroweak effective theory. We build a general effective Lagrangian, implementing the electroweak symmetry breaking SU(2)L⊗SU(2)R→SU(2)L+RSU(2)_L\otimes SU(2)_R\to SU(2)_{L+R} with a non-linear Nambu-Goldstone realization, which couples the known particles to the heavy states. We generalize the formalism developed in previous works~[1,2] to include colored resonances, both of bosonic and fermionic type. We study bosonic heavy states with JP=0±J^P=0^\pm and JP=1±J^P=1^\pm, in singlet or triplet SU(2)L+RSU(2)_{L+R} representations and in singlet or octet representations of SU(3)CSU(3)_C, and fermionic resonances with J=12J=\frac{1}{2} that are electroweak doublets and QCD triplets or singlets. Integrating out the heavy scales, we determine the complete pattern of low-energy couplings at the lowest non-trivial order. Some specific types of (strongly- and weakly-coupled) ultraviolet completions are discussed to illustrate the generality of our approach and to make contact with current experimental searches.Comment: 51 pages, 2 figures, 12 tables; v2: matches Journal versio

    La hidráulica kárstica como aplicación de la hidrodinámica general. Estudio del flujo en un terreno yesífero fisurado

    Full text link
    Se pretende plantear y desarrollar algunas de las leyes clásicas de hidrodinámica introduciendo las características que permiten su aplicación al flujo subterráneo en general y a la hidráulica kárstica en particular. Se estudia la consideración de si el movimiento del agua subterránea en el karst se puede definir como flujo a través de conductos individuales o como un medio continuo con huecos saturados en una matriz sólida. Los trabajos de Hagen (1839) y Poiseuille (1846), junto con los de Darcy (1856) configuran la referencia básica para este estudio (in Crespo, 2006). A ellos puede añadirse también las aportaciones de Couette y Chezy (Rouse, 1951) para flujo libre sobre superficies rocosas. Se presentan varios casos en los que las leyes del movimiento laminar unidireccional ofrecen soluciones que pueden ser válidas para la definición de los parámetros fundamentales del flujo del agua en el subsuelo

    Cell-Biomaterial Mechanical Interaction in the Framework of Tissue Engineering: Insights, Computational Modeling and Perspectives

    Get PDF
    Tissue engineering is an emerging field of research which combines the use of cell-seeded biomaterials both in vitro and/or in vivo with the aim of promoting new tissue formation or regeneration. In this context, how cells colonize and interact with the biomaterial is critical in order to get a functional tissue engineering product. Cell-biomaterial interaction is referred to here as the phenomenon involved in adherent cells attachment to the biomaterial surface, and their related cell functions such as growth, differentiation, migration or apoptosis. This process is inherently complex in nature involving many physico-chemical events which take place at different scales ranging from molecular to cell body (organelle) levels. Moreover, it has been demonstrated that the mechanical environment at the cell-biomaterial location may play an important role in the subsequent cell function, which remains to be elucidated. In this paper, the state-of-the-art research in the physics and mechanics of cell-biomaterial interaction is reviewed with an emphasis on focal adhesions. The paper is focused on the different models developed at different scales available to simulate certain features of cell-biomaterial interaction. A proper understanding of cell-biomaterial interaction, as well as the development of predictive models in this sense, may add some light in tissue engineering and regenerative medicine fields.Ministerio de Ciencia y TecnologĂ­a DPI2010-20399-C04-0
    • …
    corecore